1108 lines
44 KiB
Python
1108 lines
44 KiB
Python
|
import warnings
|
||
|
from abc import ABCMeta
|
||
|
from copy import deepcopy
|
||
|
from enum import Enum
|
||
|
from functools import partial
|
||
|
from pathlib import Path
|
||
|
from types import FunctionType, prepare_class, resolve_bases
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
AbstractSet,
|
||
|
Any,
|
||
|
Callable,
|
||
|
ClassVar,
|
||
|
Dict,
|
||
|
List,
|
||
|
Mapping,
|
||
|
Optional,
|
||
|
Tuple,
|
||
|
Type,
|
||
|
TypeVar,
|
||
|
Union,
|
||
|
cast,
|
||
|
no_type_check,
|
||
|
overload,
|
||
|
)
|
||
|
|
||
|
from typing_extensions import dataclass_transform
|
||
|
|
||
|
from pydantic.v1.class_validators import ValidatorGroup, extract_root_validators, extract_validators, inherit_validators
|
||
|
from pydantic.v1.config import BaseConfig, Extra, inherit_config, prepare_config
|
||
|
from pydantic.v1.error_wrappers import ErrorWrapper, ValidationError
|
||
|
from pydantic.v1.errors import ConfigError, DictError, ExtraError, MissingError
|
||
|
from pydantic.v1.fields import (
|
||
|
MAPPING_LIKE_SHAPES,
|
||
|
Field,
|
||
|
ModelField,
|
||
|
ModelPrivateAttr,
|
||
|
PrivateAttr,
|
||
|
Undefined,
|
||
|
is_finalvar_with_default_val,
|
||
|
)
|
||
|
from pydantic.v1.json import custom_pydantic_encoder, pydantic_encoder
|
||
|
from pydantic.v1.parse import Protocol, load_file, load_str_bytes
|
||
|
from pydantic.v1.schema import default_ref_template, model_schema
|
||
|
from pydantic.v1.types import PyObject, StrBytes
|
||
|
from pydantic.v1.typing import (
|
||
|
AnyCallable,
|
||
|
get_args,
|
||
|
get_origin,
|
||
|
is_classvar,
|
||
|
is_namedtuple,
|
||
|
is_union,
|
||
|
resolve_annotations,
|
||
|
update_model_forward_refs,
|
||
|
)
|
||
|
from pydantic.v1.utils import (
|
||
|
DUNDER_ATTRIBUTES,
|
||
|
ROOT_KEY,
|
||
|
ClassAttribute,
|
||
|
GetterDict,
|
||
|
Representation,
|
||
|
ValueItems,
|
||
|
generate_model_signature,
|
||
|
is_valid_field,
|
||
|
is_valid_private_name,
|
||
|
lenient_issubclass,
|
||
|
sequence_like,
|
||
|
smart_deepcopy,
|
||
|
unique_list,
|
||
|
validate_field_name,
|
||
|
)
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from inspect import Signature
|
||
|
|
||
|
from pydantic.v1.class_validators import ValidatorListDict
|
||
|
from pydantic.v1.types import ModelOrDc
|
||
|
from pydantic.v1.typing import (
|
||
|
AbstractSetIntStr,
|
||
|
AnyClassMethod,
|
||
|
CallableGenerator,
|
||
|
DictAny,
|
||
|
DictStrAny,
|
||
|
MappingIntStrAny,
|
||
|
ReprArgs,
|
||
|
SetStr,
|
||
|
TupleGenerator,
|
||
|
)
|
||
|
|
||
|
Model = TypeVar('Model', bound='BaseModel')
|
||
|
|
||
|
__all__ = 'BaseModel', 'create_model', 'validate_model'
|
||
|
|
||
|
_T = TypeVar('_T')
|
||
|
|
||
|
|
||
|
def validate_custom_root_type(fields: Dict[str, ModelField]) -> None:
|
||
|
if len(fields) > 1:
|
||
|
raise ValueError(f'{ROOT_KEY} cannot be mixed with other fields')
|
||
|
|
||
|
|
||
|
def generate_hash_function(frozen: bool) -> Optional[Callable[[Any], int]]:
|
||
|
def hash_function(self_: Any) -> int:
|
||
|
return hash(self_.__class__) + hash(tuple(self_.__dict__.values()))
|
||
|
|
||
|
return hash_function if frozen else None
|
||
|
|
||
|
|
||
|
# If a field is of type `Callable`, its default value should be a function and cannot to ignored.
|
||
|
ANNOTATED_FIELD_UNTOUCHED_TYPES: Tuple[Any, ...] = (property, type, classmethod, staticmethod)
|
||
|
# When creating a `BaseModel` instance, we bypass all the methods, properties... added to the model
|
||
|
UNTOUCHED_TYPES: Tuple[Any, ...] = (FunctionType,) + ANNOTATED_FIELD_UNTOUCHED_TYPES
|
||
|
# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we need to add this extra
|
||
|
# (somewhat hacky) boolean to keep track of whether we've created the `BaseModel` class yet, and therefore whether it's
|
||
|
# safe to refer to it. If it *hasn't* been created, we assume that the `__new__` call we're in the middle of is for
|
||
|
# the `BaseModel` class, since that's defined immediately after the metaclass.
|
||
|
_is_base_model_class_defined = False
|
||
|
|
||
|
|
||
|
@dataclass_transform(kw_only_default=True, field_specifiers=(Field,))
|
||
|
class ModelMetaclass(ABCMeta):
|
||
|
@no_type_check # noqa C901
|
||
|
def __new__(mcs, name, bases, namespace, **kwargs): # noqa C901
|
||
|
fields: Dict[str, ModelField] = {}
|
||
|
config = BaseConfig
|
||
|
validators: 'ValidatorListDict' = {}
|
||
|
|
||
|
pre_root_validators, post_root_validators = [], []
|
||
|
private_attributes: Dict[str, ModelPrivateAttr] = {}
|
||
|
base_private_attributes: Dict[str, ModelPrivateAttr] = {}
|
||
|
slots: SetStr = namespace.get('__slots__', ())
|
||
|
slots = {slots} if isinstance(slots, str) else set(slots)
|
||
|
class_vars: SetStr = set()
|
||
|
hash_func: Optional[Callable[[Any], int]] = None
|
||
|
|
||
|
for base in reversed(bases):
|
||
|
if _is_base_model_class_defined and issubclass(base, BaseModel) and base != BaseModel:
|
||
|
fields.update(smart_deepcopy(base.__fields__))
|
||
|
config = inherit_config(base.__config__, config)
|
||
|
validators = inherit_validators(base.__validators__, validators)
|
||
|
pre_root_validators += base.__pre_root_validators__
|
||
|
post_root_validators += base.__post_root_validators__
|
||
|
base_private_attributes.update(base.__private_attributes__)
|
||
|
class_vars.update(base.__class_vars__)
|
||
|
hash_func = base.__hash__
|
||
|
|
||
|
resolve_forward_refs = kwargs.pop('__resolve_forward_refs__', True)
|
||
|
allowed_config_kwargs: SetStr = {
|
||
|
key
|
||
|
for key in dir(config)
|
||
|
if not (key.startswith('__') and key.endswith('__')) # skip dunder methods and attributes
|
||
|
}
|
||
|
config_kwargs = {key: kwargs.pop(key) for key in kwargs.keys() & allowed_config_kwargs}
|
||
|
config_from_namespace = namespace.get('Config')
|
||
|
if config_kwargs and config_from_namespace:
|
||
|
raise TypeError('Specifying config in two places is ambiguous, use either Config attribute or class kwargs')
|
||
|
config = inherit_config(config_from_namespace, config, **config_kwargs)
|
||
|
|
||
|
validators = inherit_validators(extract_validators(namespace), validators)
|
||
|
vg = ValidatorGroup(validators)
|
||
|
|
||
|
for f in fields.values():
|
||
|
f.set_config(config)
|
||
|
extra_validators = vg.get_validators(f.name)
|
||
|
if extra_validators:
|
||
|
f.class_validators.update(extra_validators)
|
||
|
# re-run prepare to add extra validators
|
||
|
f.populate_validators()
|
||
|
|
||
|
prepare_config(config, name)
|
||
|
|
||
|
untouched_types = ANNOTATED_FIELD_UNTOUCHED_TYPES
|
||
|
|
||
|
def is_untouched(v: Any) -> bool:
|
||
|
return isinstance(v, untouched_types) or v.__class__.__name__ == 'cython_function_or_method'
|
||
|
|
||
|
if (namespace.get('__module__'), namespace.get('__qualname__')) != ('pydantic.main', 'BaseModel'):
|
||
|
annotations = resolve_annotations(namespace.get('__annotations__', {}), namespace.get('__module__', None))
|
||
|
# annotation only fields need to come first in fields
|
||
|
for ann_name, ann_type in annotations.items():
|
||
|
if is_classvar(ann_type):
|
||
|
class_vars.add(ann_name)
|
||
|
elif is_finalvar_with_default_val(ann_type, namespace.get(ann_name, Undefined)):
|
||
|
class_vars.add(ann_name)
|
||
|
elif is_valid_field(ann_name):
|
||
|
validate_field_name(bases, ann_name)
|
||
|
value = namespace.get(ann_name, Undefined)
|
||
|
allowed_types = get_args(ann_type) if is_union(get_origin(ann_type)) else (ann_type,)
|
||
|
if (
|
||
|
is_untouched(value)
|
||
|
and ann_type != PyObject
|
||
|
and not any(
|
||
|
lenient_issubclass(get_origin(allowed_type), Type) for allowed_type in allowed_types
|
||
|
)
|
||
|
):
|
||
|
continue
|
||
|
fields[ann_name] = ModelField.infer(
|
||
|
name=ann_name,
|
||
|
value=value,
|
||
|
annotation=ann_type,
|
||
|
class_validators=vg.get_validators(ann_name),
|
||
|
config=config,
|
||
|
)
|
||
|
elif ann_name not in namespace and config.underscore_attrs_are_private:
|
||
|
private_attributes[ann_name] = PrivateAttr()
|
||
|
|
||
|
untouched_types = UNTOUCHED_TYPES + config.keep_untouched
|
||
|
for var_name, value in namespace.items():
|
||
|
can_be_changed = var_name not in class_vars and not is_untouched(value)
|
||
|
if isinstance(value, ModelPrivateAttr):
|
||
|
if not is_valid_private_name(var_name):
|
||
|
raise NameError(
|
||
|
f'Private attributes "{var_name}" must not be a valid field name; '
|
||
|
f'Use sunder or dunder names, e. g. "_{var_name}" or "__{var_name}__"'
|
||
|
)
|
||
|
private_attributes[var_name] = value
|
||
|
elif config.underscore_attrs_are_private and is_valid_private_name(var_name) and can_be_changed:
|
||
|
private_attributes[var_name] = PrivateAttr(default=value)
|
||
|
elif is_valid_field(var_name) and var_name not in annotations and can_be_changed:
|
||
|
validate_field_name(bases, var_name)
|
||
|
inferred = ModelField.infer(
|
||
|
name=var_name,
|
||
|
value=value,
|
||
|
annotation=annotations.get(var_name, Undefined),
|
||
|
class_validators=vg.get_validators(var_name),
|
||
|
config=config,
|
||
|
)
|
||
|
if var_name in fields:
|
||
|
if lenient_issubclass(inferred.type_, fields[var_name].type_):
|
||
|
inferred.type_ = fields[var_name].type_
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
f'The type of {name}.{var_name} differs from the new default value; '
|
||
|
f'if you wish to change the type of this field, please use a type annotation'
|
||
|
)
|
||
|
fields[var_name] = inferred
|
||
|
|
||
|
_custom_root_type = ROOT_KEY in fields
|
||
|
if _custom_root_type:
|
||
|
validate_custom_root_type(fields)
|
||
|
vg.check_for_unused()
|
||
|
if config.json_encoders:
|
||
|
json_encoder = partial(custom_pydantic_encoder, config.json_encoders)
|
||
|
else:
|
||
|
json_encoder = pydantic_encoder
|
||
|
pre_rv_new, post_rv_new = extract_root_validators(namespace)
|
||
|
|
||
|
if hash_func is None:
|
||
|
hash_func = generate_hash_function(config.frozen)
|
||
|
|
||
|
exclude_from_namespace = fields | private_attributes.keys() | {'__slots__'}
|
||
|
new_namespace = {
|
||
|
'__config__': config,
|
||
|
'__fields__': fields,
|
||
|
'__exclude_fields__': {
|
||
|
name: field.field_info.exclude for name, field in fields.items() if field.field_info.exclude is not None
|
||
|
}
|
||
|
or None,
|
||
|
'__include_fields__': {
|
||
|
name: field.field_info.include for name, field in fields.items() if field.field_info.include is not None
|
||
|
}
|
||
|
or None,
|
||
|
'__validators__': vg.validators,
|
||
|
'__pre_root_validators__': unique_list(
|
||
|
pre_root_validators + pre_rv_new,
|
||
|
name_factory=lambda v: v.__name__,
|
||
|
),
|
||
|
'__post_root_validators__': unique_list(
|
||
|
post_root_validators + post_rv_new,
|
||
|
name_factory=lambda skip_on_failure_and_v: skip_on_failure_and_v[1].__name__,
|
||
|
),
|
||
|
'__schema_cache__': {},
|
||
|
'__json_encoder__': staticmethod(json_encoder),
|
||
|
'__custom_root_type__': _custom_root_type,
|
||
|
'__private_attributes__': {**base_private_attributes, **private_attributes},
|
||
|
'__slots__': slots | private_attributes.keys(),
|
||
|
'__hash__': hash_func,
|
||
|
'__class_vars__': class_vars,
|
||
|
**{n: v for n, v in namespace.items() if n not in exclude_from_namespace},
|
||
|
}
|
||
|
|
||
|
cls = super().__new__(mcs, name, bases, new_namespace, **kwargs)
|
||
|
# set __signature__ attr only for model class, but not for its instances
|
||
|
cls.__signature__ = ClassAttribute('__signature__', generate_model_signature(cls.__init__, fields, config))
|
||
|
if resolve_forward_refs:
|
||
|
cls.__try_update_forward_refs__()
|
||
|
|
||
|
# preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487
|
||
|
# for attributes not in `new_namespace` (e.g. private attributes)
|
||
|
for name, obj in namespace.items():
|
||
|
if name not in new_namespace:
|
||
|
set_name = getattr(obj, '__set_name__', None)
|
||
|
if callable(set_name):
|
||
|
set_name(cls, name)
|
||
|
|
||
|
return cls
|
||
|
|
||
|
def __instancecheck__(self, instance: Any) -> bool:
|
||
|
"""
|
||
|
Avoid calling ABC _abc_subclasscheck unless we're pretty sure.
|
||
|
|
||
|
See #3829 and python/cpython#92810
|
||
|
"""
|
||
|
return hasattr(instance, '__fields__') and super().__instancecheck__(instance)
|
||
|
|
||
|
|
||
|
object_setattr = object.__setattr__
|
||
|
|
||
|
|
||
|
class BaseModel(Representation, metaclass=ModelMetaclass):
|
||
|
if TYPE_CHECKING:
|
||
|
# populated by the metaclass, defined here to help IDEs only
|
||
|
__fields__: ClassVar[Dict[str, ModelField]] = {}
|
||
|
__include_fields__: ClassVar[Optional[Mapping[str, Any]]] = None
|
||
|
__exclude_fields__: ClassVar[Optional[Mapping[str, Any]]] = None
|
||
|
__validators__: ClassVar[Dict[str, AnyCallable]] = {}
|
||
|
__pre_root_validators__: ClassVar[List[AnyCallable]]
|
||
|
__post_root_validators__: ClassVar[List[Tuple[bool, AnyCallable]]]
|
||
|
__config__: ClassVar[Type[BaseConfig]] = BaseConfig
|
||
|
__json_encoder__: ClassVar[Callable[[Any], Any]] = lambda x: x
|
||
|
__schema_cache__: ClassVar['DictAny'] = {}
|
||
|
__custom_root_type__: ClassVar[bool] = False
|
||
|
__signature__: ClassVar['Signature']
|
||
|
__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]]
|
||
|
__class_vars__: ClassVar[SetStr]
|
||
|
__fields_set__: ClassVar[SetStr] = set()
|
||
|
|
||
|
Config = BaseConfig
|
||
|
__slots__ = ('__dict__', '__fields_set__')
|
||
|
__doc__ = '' # Null out the Representation docstring
|
||
|
|
||
|
def __init__(__pydantic_self__, **data: Any) -> None:
|
||
|
"""
|
||
|
Create a new model by parsing and validating input data from keyword arguments.
|
||
|
|
||
|
Raises ValidationError if the input data cannot be parsed to form a valid model.
|
||
|
"""
|
||
|
# Uses something other than `self` the first arg to allow "self" as a settable attribute
|
||
|
values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data)
|
||
|
if validation_error:
|
||
|
raise validation_error
|
||
|
try:
|
||
|
object_setattr(__pydantic_self__, '__dict__', values)
|
||
|
except TypeError as e:
|
||
|
raise TypeError(
|
||
|
'Model values must be a dict; you may not have returned a dictionary from a root validator'
|
||
|
) from e
|
||
|
object_setattr(__pydantic_self__, '__fields_set__', fields_set)
|
||
|
__pydantic_self__._init_private_attributes()
|
||
|
|
||
|
@no_type_check
|
||
|
def __setattr__(self, name, value): # noqa: C901 (ignore complexity)
|
||
|
if name in self.__private_attributes__ or name in DUNDER_ATTRIBUTES:
|
||
|
return object_setattr(self, name, value)
|
||
|
|
||
|
if self.__config__.extra is not Extra.allow and name not in self.__fields__:
|
||
|
raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"')
|
||
|
elif not self.__config__.allow_mutation or self.__config__.frozen:
|
||
|
raise TypeError(f'"{self.__class__.__name__}" is immutable and does not support item assignment')
|
||
|
elif name in self.__fields__ and self.__fields__[name].final:
|
||
|
raise TypeError(
|
||
|
f'"{self.__class__.__name__}" object "{name}" field is final and does not support reassignment'
|
||
|
)
|
||
|
elif self.__config__.validate_assignment:
|
||
|
new_values = {**self.__dict__, name: value}
|
||
|
|
||
|
for validator in self.__pre_root_validators__:
|
||
|
try:
|
||
|
new_values = validator(self.__class__, new_values)
|
||
|
except (ValueError, TypeError, AssertionError) as exc:
|
||
|
raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], self.__class__)
|
||
|
|
||
|
known_field = self.__fields__.get(name, None)
|
||
|
if known_field:
|
||
|
# We want to
|
||
|
# - make sure validators are called without the current value for this field inside `values`
|
||
|
# - keep other values (e.g. submodels) untouched (using `BaseModel.dict()` will change them into dicts)
|
||
|
# - keep the order of the fields
|
||
|
if not known_field.field_info.allow_mutation:
|
||
|
raise TypeError(f'"{known_field.name}" has allow_mutation set to False and cannot be assigned')
|
||
|
dict_without_original_value = {k: v for k, v in self.__dict__.items() if k != name}
|
||
|
value, error_ = known_field.validate(value, dict_without_original_value, loc=name, cls=self.__class__)
|
||
|
if error_:
|
||
|
raise ValidationError([error_], self.__class__)
|
||
|
else:
|
||
|
new_values[name] = value
|
||
|
|
||
|
errors = []
|
||
|
for skip_on_failure, validator in self.__post_root_validators__:
|
||
|
if skip_on_failure and errors:
|
||
|
continue
|
||
|
try:
|
||
|
new_values = validator(self.__class__, new_values)
|
||
|
except (ValueError, TypeError, AssertionError) as exc:
|
||
|
errors.append(ErrorWrapper(exc, loc=ROOT_KEY))
|
||
|
if errors:
|
||
|
raise ValidationError(errors, self.__class__)
|
||
|
|
||
|
# update the whole __dict__ as other values than just `value`
|
||
|
# may be changed (e.g. with `root_validator`)
|
||
|
object_setattr(self, '__dict__', new_values)
|
||
|
else:
|
||
|
self.__dict__[name] = value
|
||
|
|
||
|
self.__fields_set__.add(name)
|
||
|
|
||
|
def __getstate__(self) -> 'DictAny':
|
||
|
private_attrs = ((k, getattr(self, k, Undefined)) for k in self.__private_attributes__)
|
||
|
return {
|
||
|
'__dict__': self.__dict__,
|
||
|
'__fields_set__': self.__fields_set__,
|
||
|
'__private_attribute_values__': {k: v for k, v in private_attrs if v is not Undefined},
|
||
|
}
|
||
|
|
||
|
def __setstate__(self, state: 'DictAny') -> None:
|
||
|
object_setattr(self, '__dict__', state['__dict__'])
|
||
|
object_setattr(self, '__fields_set__', state['__fields_set__'])
|
||
|
for name, value in state.get('__private_attribute_values__', {}).items():
|
||
|
object_setattr(self, name, value)
|
||
|
|
||
|
def _init_private_attributes(self) -> None:
|
||
|
for name, private_attr in self.__private_attributes__.items():
|
||
|
default = private_attr.get_default()
|
||
|
if default is not Undefined:
|
||
|
object_setattr(self, name, default)
|
||
|
|
||
|
def dict(
|
||
|
self,
|
||
|
*,
|
||
|
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
|
||
|
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
|
||
|
by_alias: bool = False,
|
||
|
skip_defaults: Optional[bool] = None,
|
||
|
exclude_unset: bool = False,
|
||
|
exclude_defaults: bool = False,
|
||
|
exclude_none: bool = False,
|
||
|
) -> 'DictStrAny':
|
||
|
"""
|
||
|
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
|
||
|
|
||
|
"""
|
||
|
if skip_defaults is not None:
|
||
|
warnings.warn(
|
||
|
f'{self.__class__.__name__}.dict(): "skip_defaults" is deprecated and replaced by "exclude_unset"',
|
||
|
DeprecationWarning,
|
||
|
)
|
||
|
exclude_unset = skip_defaults
|
||
|
|
||
|
return dict(
|
||
|
self._iter(
|
||
|
to_dict=True,
|
||
|
by_alias=by_alias,
|
||
|
include=include,
|
||
|
exclude=exclude,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
exclude_none=exclude_none,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
def json(
|
||
|
self,
|
||
|
*,
|
||
|
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
|
||
|
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
|
||
|
by_alias: bool = False,
|
||
|
skip_defaults: Optional[bool] = None,
|
||
|
exclude_unset: bool = False,
|
||
|
exclude_defaults: bool = False,
|
||
|
exclude_none: bool = False,
|
||
|
encoder: Optional[Callable[[Any], Any]] = None,
|
||
|
models_as_dict: bool = True,
|
||
|
**dumps_kwargs: Any,
|
||
|
) -> str:
|
||
|
"""
|
||
|
Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`.
|
||
|
|
||
|
`encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`.
|
||
|
"""
|
||
|
if skip_defaults is not None:
|
||
|
warnings.warn(
|
||
|
f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated and replaced by "exclude_unset"',
|
||
|
DeprecationWarning,
|
||
|
)
|
||
|
exclude_unset = skip_defaults
|
||
|
encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__)
|
||
|
|
||
|
# We don't directly call `self.dict()`, which does exactly this with `to_dict=True`
|
||
|
# because we want to be able to keep raw `BaseModel` instances and not as `dict`.
|
||
|
# This allows users to write custom JSON encoders for given `BaseModel` classes.
|
||
|
data = dict(
|
||
|
self._iter(
|
||
|
to_dict=models_as_dict,
|
||
|
by_alias=by_alias,
|
||
|
include=include,
|
||
|
exclude=exclude,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
exclude_none=exclude_none,
|
||
|
)
|
||
|
)
|
||
|
if self.__custom_root_type__:
|
||
|
data = data[ROOT_KEY]
|
||
|
return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs)
|
||
|
|
||
|
@classmethod
|
||
|
def _enforce_dict_if_root(cls, obj: Any) -> Any:
|
||
|
if cls.__custom_root_type__ and (
|
||
|
not (isinstance(obj, dict) and obj.keys() == {ROOT_KEY})
|
||
|
and not (isinstance(obj, BaseModel) and obj.__fields__.keys() == {ROOT_KEY})
|
||
|
or cls.__fields__[ROOT_KEY].shape in MAPPING_LIKE_SHAPES
|
||
|
):
|
||
|
return {ROOT_KEY: obj}
|
||
|
else:
|
||
|
return obj
|
||
|
|
||
|
@classmethod
|
||
|
def parse_obj(cls: Type['Model'], obj: Any) -> 'Model':
|
||
|
obj = cls._enforce_dict_if_root(obj)
|
||
|
if not isinstance(obj, dict):
|
||
|
try:
|
||
|
obj = dict(obj)
|
||
|
except (TypeError, ValueError) as e:
|
||
|
exc = TypeError(f'{cls.__name__} expected dict not {obj.__class__.__name__}')
|
||
|
raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls) from e
|
||
|
return cls(**obj)
|
||
|
|
||
|
@classmethod
|
||
|
def parse_raw(
|
||
|
cls: Type['Model'],
|
||
|
b: StrBytes,
|
||
|
*,
|
||
|
content_type: str = None,
|
||
|
encoding: str = 'utf8',
|
||
|
proto: Protocol = None,
|
||
|
allow_pickle: bool = False,
|
||
|
) -> 'Model':
|
||
|
try:
|
||
|
obj = load_str_bytes(
|
||
|
b,
|
||
|
proto=proto,
|
||
|
content_type=content_type,
|
||
|
encoding=encoding,
|
||
|
allow_pickle=allow_pickle,
|
||
|
json_loads=cls.__config__.json_loads,
|
||
|
)
|
||
|
except (ValueError, TypeError, UnicodeDecodeError) as e:
|
||
|
raise ValidationError([ErrorWrapper(e, loc=ROOT_KEY)], cls)
|
||
|
return cls.parse_obj(obj)
|
||
|
|
||
|
@classmethod
|
||
|
def parse_file(
|
||
|
cls: Type['Model'],
|
||
|
path: Union[str, Path],
|
||
|
*,
|
||
|
content_type: str = None,
|
||
|
encoding: str = 'utf8',
|
||
|
proto: Protocol = None,
|
||
|
allow_pickle: bool = False,
|
||
|
) -> 'Model':
|
||
|
obj = load_file(
|
||
|
path,
|
||
|
proto=proto,
|
||
|
content_type=content_type,
|
||
|
encoding=encoding,
|
||
|
allow_pickle=allow_pickle,
|
||
|
json_loads=cls.__config__.json_loads,
|
||
|
)
|
||
|
return cls.parse_obj(obj)
|
||
|
|
||
|
@classmethod
|
||
|
def from_orm(cls: Type['Model'], obj: Any) -> 'Model':
|
||
|
if not cls.__config__.orm_mode:
|
||
|
raise ConfigError('You must have the config attribute orm_mode=True to use from_orm')
|
||
|
obj = {ROOT_KEY: obj} if cls.__custom_root_type__ else cls._decompose_class(obj)
|
||
|
m = cls.__new__(cls)
|
||
|
values, fields_set, validation_error = validate_model(cls, obj)
|
||
|
if validation_error:
|
||
|
raise validation_error
|
||
|
object_setattr(m, '__dict__', values)
|
||
|
object_setattr(m, '__fields_set__', fields_set)
|
||
|
m._init_private_attributes()
|
||
|
return m
|
||
|
|
||
|
@classmethod
|
||
|
def construct(cls: Type['Model'], _fields_set: Optional['SetStr'] = None, **values: Any) -> 'Model':
|
||
|
"""
|
||
|
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
|
||
|
Default values are respected, but no other validation is performed.
|
||
|
Behaves as if `Config.extra = 'allow'` was set since it adds all passed values
|
||
|
"""
|
||
|
m = cls.__new__(cls)
|
||
|
fields_values: Dict[str, Any] = {}
|
||
|
for name, field in cls.__fields__.items():
|
||
|
if field.alt_alias and field.alias in values:
|
||
|
fields_values[name] = values[field.alias]
|
||
|
elif name in values:
|
||
|
fields_values[name] = values[name]
|
||
|
elif not field.required:
|
||
|
fields_values[name] = field.get_default()
|
||
|
fields_values.update(values)
|
||
|
object_setattr(m, '__dict__', fields_values)
|
||
|
if _fields_set is None:
|
||
|
_fields_set = set(values.keys())
|
||
|
object_setattr(m, '__fields_set__', _fields_set)
|
||
|
m._init_private_attributes()
|
||
|
return m
|
||
|
|
||
|
def _copy_and_set_values(self: 'Model', values: 'DictStrAny', fields_set: 'SetStr', *, deep: bool) -> 'Model':
|
||
|
if deep:
|
||
|
# chances of having empty dict here are quite low for using smart_deepcopy
|
||
|
values = deepcopy(values)
|
||
|
|
||
|
cls = self.__class__
|
||
|
m = cls.__new__(cls)
|
||
|
object_setattr(m, '__dict__', values)
|
||
|
object_setattr(m, '__fields_set__', fields_set)
|
||
|
for name in self.__private_attributes__:
|
||
|
value = getattr(self, name, Undefined)
|
||
|
if value is not Undefined:
|
||
|
if deep:
|
||
|
value = deepcopy(value)
|
||
|
object_setattr(m, name, value)
|
||
|
|
||
|
return m
|
||
|
|
||
|
def copy(
|
||
|
self: 'Model',
|
||
|
*,
|
||
|
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
|
||
|
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
|
||
|
update: Optional['DictStrAny'] = None,
|
||
|
deep: bool = False,
|
||
|
) -> 'Model':
|
||
|
"""
|
||
|
Duplicate a model, optionally choose which fields to include, exclude and change.
|
||
|
|
||
|
:param include: fields to include in new model
|
||
|
:param exclude: fields to exclude from new model, as with values this takes precedence over include
|
||
|
:param update: values to change/add in the new model. Note: the data is not validated before creating
|
||
|
the new model: you should trust this data
|
||
|
:param deep: set to `True` to make a deep copy of the model
|
||
|
:return: new model instance
|
||
|
"""
|
||
|
|
||
|
values = dict(
|
||
|
self._iter(to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False),
|
||
|
**(update or {}),
|
||
|
)
|
||
|
|
||
|
# new `__fields_set__` can have unset optional fields with a set value in `update` kwarg
|
||
|
if update:
|
||
|
fields_set = self.__fields_set__ | update.keys()
|
||
|
else:
|
||
|
fields_set = set(self.__fields_set__)
|
||
|
|
||
|
return self._copy_and_set_values(values, fields_set, deep=deep)
|
||
|
|
||
|
@classmethod
|
||
|
def schema(cls, by_alias: bool = True, ref_template: str = default_ref_template) -> 'DictStrAny':
|
||
|
cached = cls.__schema_cache__.get((by_alias, ref_template))
|
||
|
if cached is not None:
|
||
|
return cached
|
||
|
s = model_schema(cls, by_alias=by_alias, ref_template=ref_template)
|
||
|
cls.__schema_cache__[(by_alias, ref_template)] = s
|
||
|
return s
|
||
|
|
||
|
@classmethod
|
||
|
def schema_json(
|
||
|
cls, *, by_alias: bool = True, ref_template: str = default_ref_template, **dumps_kwargs: Any
|
||
|
) -> str:
|
||
|
from pydantic.v1.json import pydantic_encoder
|
||
|
|
||
|
return cls.__config__.json_dumps(
|
||
|
cls.schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def __get_validators__(cls) -> 'CallableGenerator':
|
||
|
yield cls.validate
|
||
|
|
||
|
@classmethod
|
||
|
def validate(cls: Type['Model'], value: Any) -> 'Model':
|
||
|
if isinstance(value, cls):
|
||
|
copy_on_model_validation = cls.__config__.copy_on_model_validation
|
||
|
# whether to deep or shallow copy the model on validation, None means do not copy
|
||
|
deep_copy: Optional[bool] = None
|
||
|
if copy_on_model_validation not in {'deep', 'shallow', 'none'}:
|
||
|
# Warn about deprecated behavior
|
||
|
warnings.warn(
|
||
|
"`copy_on_model_validation` should be a string: 'deep', 'shallow' or 'none'", DeprecationWarning
|
||
|
)
|
||
|
if copy_on_model_validation:
|
||
|
deep_copy = False
|
||
|
|
||
|
if copy_on_model_validation == 'shallow':
|
||
|
# shallow copy
|
||
|
deep_copy = False
|
||
|
elif copy_on_model_validation == 'deep':
|
||
|
# deep copy
|
||
|
deep_copy = True
|
||
|
|
||
|
if deep_copy is None:
|
||
|
return value
|
||
|
else:
|
||
|
return value._copy_and_set_values(value.__dict__, value.__fields_set__, deep=deep_copy)
|
||
|
|
||
|
value = cls._enforce_dict_if_root(value)
|
||
|
|
||
|
if isinstance(value, dict):
|
||
|
return cls(**value)
|
||
|
elif cls.__config__.orm_mode:
|
||
|
return cls.from_orm(value)
|
||
|
else:
|
||
|
try:
|
||
|
value_as_dict = dict(value)
|
||
|
except (TypeError, ValueError) as e:
|
||
|
raise DictError() from e
|
||
|
return cls(**value_as_dict)
|
||
|
|
||
|
@classmethod
|
||
|
def _decompose_class(cls: Type['Model'], obj: Any) -> GetterDict:
|
||
|
if isinstance(obj, GetterDict):
|
||
|
return obj
|
||
|
return cls.__config__.getter_dict(obj)
|
||
|
|
||
|
@classmethod
|
||
|
@no_type_check
|
||
|
def _get_value(
|
||
|
cls,
|
||
|
v: Any,
|
||
|
to_dict: bool,
|
||
|
by_alias: bool,
|
||
|
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']],
|
||
|
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']],
|
||
|
exclude_unset: bool,
|
||
|
exclude_defaults: bool,
|
||
|
exclude_none: bool,
|
||
|
) -> Any:
|
||
|
if isinstance(v, BaseModel):
|
||
|
if to_dict:
|
||
|
v_dict = v.dict(
|
||
|
by_alias=by_alias,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
include=include,
|
||
|
exclude=exclude,
|
||
|
exclude_none=exclude_none,
|
||
|
)
|
||
|
if ROOT_KEY in v_dict:
|
||
|
return v_dict[ROOT_KEY]
|
||
|
return v_dict
|
||
|
else:
|
||
|
return v.copy(include=include, exclude=exclude)
|
||
|
|
||
|
value_exclude = ValueItems(v, exclude) if exclude else None
|
||
|
value_include = ValueItems(v, include) if include else None
|
||
|
|
||
|
if isinstance(v, dict):
|
||
|
return {
|
||
|
k_: cls._get_value(
|
||
|
v_,
|
||
|
to_dict=to_dict,
|
||
|
by_alias=by_alias,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
include=value_include and value_include.for_element(k_),
|
||
|
exclude=value_exclude and value_exclude.for_element(k_),
|
||
|
exclude_none=exclude_none,
|
||
|
)
|
||
|
for k_, v_ in v.items()
|
||
|
if (not value_exclude or not value_exclude.is_excluded(k_))
|
||
|
and (not value_include or value_include.is_included(k_))
|
||
|
}
|
||
|
|
||
|
elif sequence_like(v):
|
||
|
seq_args = (
|
||
|
cls._get_value(
|
||
|
v_,
|
||
|
to_dict=to_dict,
|
||
|
by_alias=by_alias,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
include=value_include and value_include.for_element(i),
|
||
|
exclude=value_exclude and value_exclude.for_element(i),
|
||
|
exclude_none=exclude_none,
|
||
|
)
|
||
|
for i, v_ in enumerate(v)
|
||
|
if (not value_exclude or not value_exclude.is_excluded(i))
|
||
|
and (not value_include or value_include.is_included(i))
|
||
|
)
|
||
|
|
||
|
return v.__class__(*seq_args) if is_namedtuple(v.__class__) else v.__class__(seq_args)
|
||
|
|
||
|
elif isinstance(v, Enum) and getattr(cls.Config, 'use_enum_values', False):
|
||
|
return v.value
|
||
|
|
||
|
else:
|
||
|
return v
|
||
|
|
||
|
@classmethod
|
||
|
def __try_update_forward_refs__(cls, **localns: Any) -> None:
|
||
|
"""
|
||
|
Same as update_forward_refs but will not raise exception
|
||
|
when forward references are not defined.
|
||
|
"""
|
||
|
update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns, (NameError,))
|
||
|
|
||
|
@classmethod
|
||
|
def update_forward_refs(cls, **localns: Any) -> None:
|
||
|
"""
|
||
|
Try to update ForwardRefs on fields based on this Model, globalns and localns.
|
||
|
"""
|
||
|
update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns)
|
||
|
|
||
|
def __iter__(self) -> 'TupleGenerator':
|
||
|
"""
|
||
|
so `dict(model)` works
|
||
|
"""
|
||
|
yield from self.__dict__.items()
|
||
|
|
||
|
def _iter(
|
||
|
self,
|
||
|
to_dict: bool = False,
|
||
|
by_alias: bool = False,
|
||
|
include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
|
||
|
exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None,
|
||
|
exclude_unset: bool = False,
|
||
|
exclude_defaults: bool = False,
|
||
|
exclude_none: bool = False,
|
||
|
) -> 'TupleGenerator':
|
||
|
# Merge field set excludes with explicit exclude parameter with explicit overriding field set options.
|
||
|
# The extra "is not None" guards are not logically necessary but optimizes performance for the simple case.
|
||
|
if exclude is not None or self.__exclude_fields__ is not None:
|
||
|
exclude = ValueItems.merge(self.__exclude_fields__, exclude)
|
||
|
|
||
|
if include is not None or self.__include_fields__ is not None:
|
||
|
include = ValueItems.merge(self.__include_fields__, include, intersect=True)
|
||
|
|
||
|
allowed_keys = self._calculate_keys(
|
||
|
include=include, exclude=exclude, exclude_unset=exclude_unset # type: ignore
|
||
|
)
|
||
|
if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none):
|
||
|
# huge boost for plain _iter()
|
||
|
yield from self.__dict__.items()
|
||
|
return
|
||
|
|
||
|
value_exclude = ValueItems(self, exclude) if exclude is not None else None
|
||
|
value_include = ValueItems(self, include) if include is not None else None
|
||
|
|
||
|
for field_key, v in self.__dict__.items():
|
||
|
if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None):
|
||
|
continue
|
||
|
|
||
|
if exclude_defaults:
|
||
|
model_field = self.__fields__.get(field_key)
|
||
|
if not getattr(model_field, 'required', True) and getattr(model_field, 'default', _missing) == v:
|
||
|
continue
|
||
|
|
||
|
if by_alias and field_key in self.__fields__:
|
||
|
dict_key = self.__fields__[field_key].alias
|
||
|
else:
|
||
|
dict_key = field_key
|
||
|
|
||
|
if to_dict or value_include or value_exclude:
|
||
|
v = self._get_value(
|
||
|
v,
|
||
|
to_dict=to_dict,
|
||
|
by_alias=by_alias,
|
||
|
include=value_include and value_include.for_element(field_key),
|
||
|
exclude=value_exclude and value_exclude.for_element(field_key),
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
exclude_none=exclude_none,
|
||
|
)
|
||
|
yield dict_key, v
|
||
|
|
||
|
def _calculate_keys(
|
||
|
self,
|
||
|
include: Optional['MappingIntStrAny'],
|
||
|
exclude: Optional['MappingIntStrAny'],
|
||
|
exclude_unset: bool,
|
||
|
update: Optional['DictStrAny'] = None,
|
||
|
) -> Optional[AbstractSet[str]]:
|
||
|
if include is None and exclude is None and exclude_unset is False:
|
||
|
return None
|
||
|
|
||
|
keys: AbstractSet[str]
|
||
|
if exclude_unset:
|
||
|
keys = self.__fields_set__.copy()
|
||
|
else:
|
||
|
keys = self.__dict__.keys()
|
||
|
|
||
|
if include is not None:
|
||
|
keys &= include.keys()
|
||
|
|
||
|
if update:
|
||
|
keys -= update.keys()
|
||
|
|
||
|
if exclude:
|
||
|
keys -= {k for k, v in exclude.items() if ValueItems.is_true(v)}
|
||
|
|
||
|
return keys
|
||
|
|
||
|
def __eq__(self, other: Any) -> bool:
|
||
|
if isinstance(other, BaseModel):
|
||
|
return self.dict() == other.dict()
|
||
|
else:
|
||
|
return self.dict() == other
|
||
|
|
||
|
def __repr_args__(self) -> 'ReprArgs':
|
||
|
return [
|
||
|
(k, v)
|
||
|
for k, v in self.__dict__.items()
|
||
|
if k not in DUNDER_ATTRIBUTES and (k not in self.__fields__ or self.__fields__[k].field_info.repr)
|
||
|
]
|
||
|
|
||
|
|
||
|
_is_base_model_class_defined = True
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def create_model(
|
||
|
__model_name: str,
|
||
|
*,
|
||
|
__config__: Optional[Type[BaseConfig]] = None,
|
||
|
__base__: None = None,
|
||
|
__module__: str = __name__,
|
||
|
__validators__: Dict[str, 'AnyClassMethod'] = None,
|
||
|
__cls_kwargs__: Dict[str, Any] = None,
|
||
|
**field_definitions: Any,
|
||
|
) -> Type['BaseModel']:
|
||
|
...
|
||
|
|
||
|
|
||
|
@overload
|
||
|
def create_model(
|
||
|
__model_name: str,
|
||
|
*,
|
||
|
__config__: Optional[Type[BaseConfig]] = None,
|
||
|
__base__: Union[Type['Model'], Tuple[Type['Model'], ...]],
|
||
|
__module__: str = __name__,
|
||
|
__validators__: Dict[str, 'AnyClassMethod'] = None,
|
||
|
__cls_kwargs__: Dict[str, Any] = None,
|
||
|
**field_definitions: Any,
|
||
|
) -> Type['Model']:
|
||
|
...
|
||
|
|
||
|
|
||
|
def create_model(
|
||
|
__model_name: str,
|
||
|
*,
|
||
|
__config__: Optional[Type[BaseConfig]] = None,
|
||
|
__base__: Union[None, Type['Model'], Tuple[Type['Model'], ...]] = None,
|
||
|
__module__: str = __name__,
|
||
|
__validators__: Dict[str, 'AnyClassMethod'] = None,
|
||
|
__cls_kwargs__: Dict[str, Any] = None,
|
||
|
__slots__: Optional[Tuple[str, ...]] = None,
|
||
|
**field_definitions: Any,
|
||
|
) -> Type['Model']:
|
||
|
"""
|
||
|
Dynamically create a model.
|
||
|
:param __model_name: name of the created model
|
||
|
:param __config__: config class to use for the new model
|
||
|
:param __base__: base class for the new model to inherit from
|
||
|
:param __module__: module of the created model
|
||
|
:param __validators__: a dict of method names and @validator class methods
|
||
|
:param __cls_kwargs__: a dict for class creation
|
||
|
:param __slots__: Deprecated, `__slots__` should not be passed to `create_model`
|
||
|
:param field_definitions: fields of the model (or extra fields if a base is supplied)
|
||
|
in the format `<name>=(<type>, <default default>)` or `<name>=<default value>, e.g.
|
||
|
`foobar=(str, ...)` or `foobar=123`, or, for complex use-cases, in the format
|
||
|
`<name>=<Field>` or `<name>=(<type>, <FieldInfo>)`, e.g.
|
||
|
`foo=Field(datetime, default_factory=datetime.utcnow, alias='bar')` or
|
||
|
`foo=(str, FieldInfo(title='Foo'))`
|
||
|
"""
|
||
|
if __slots__ is not None:
|
||
|
# __slots__ will be ignored from here on
|
||
|
warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning)
|
||
|
|
||
|
if __base__ is not None:
|
||
|
if __config__ is not None:
|
||
|
raise ConfigError('to avoid confusion __config__ and __base__ cannot be used together')
|
||
|
if not isinstance(__base__, tuple):
|
||
|
__base__ = (__base__,)
|
||
|
else:
|
||
|
__base__ = (cast(Type['Model'], BaseModel),)
|
||
|
|
||
|
__cls_kwargs__ = __cls_kwargs__ or {}
|
||
|
|
||
|
fields = {}
|
||
|
annotations = {}
|
||
|
|
||
|
for f_name, f_def in field_definitions.items():
|
||
|
if not is_valid_field(f_name):
|
||
|
warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning)
|
||
|
if isinstance(f_def, tuple):
|
||
|
try:
|
||
|
f_annotation, f_value = f_def
|
||
|
except ValueError as e:
|
||
|
raise ConfigError(
|
||
|
'field definitions should either be a tuple of (<type>, <default>) or just a '
|
||
|
'default value, unfortunately this means tuples as '
|
||
|
'default values are not allowed'
|
||
|
) from e
|
||
|
else:
|
||
|
f_annotation, f_value = None, f_def
|
||
|
|
||
|
if f_annotation:
|
||
|
annotations[f_name] = f_annotation
|
||
|
fields[f_name] = f_value
|
||
|
|
||
|
namespace: 'DictStrAny' = {'__annotations__': annotations, '__module__': __module__}
|
||
|
if __validators__:
|
||
|
namespace.update(__validators__)
|
||
|
namespace.update(fields)
|
||
|
if __config__:
|
||
|
namespace['Config'] = inherit_config(__config__, BaseConfig)
|
||
|
resolved_bases = resolve_bases(__base__)
|
||
|
meta, ns, kwds = prepare_class(__model_name, resolved_bases, kwds=__cls_kwargs__)
|
||
|
if resolved_bases is not __base__:
|
||
|
ns['__orig_bases__'] = __base__
|
||
|
namespace.update(ns)
|
||
|
return meta(__model_name, resolved_bases, namespace, **kwds)
|
||
|
|
||
|
|
||
|
_missing = object()
|
||
|
|
||
|
|
||
|
def validate_model( # noqa: C901 (ignore complexity)
|
||
|
model: Type[BaseModel], input_data: 'DictStrAny', cls: 'ModelOrDc' = None
|
||
|
) -> Tuple['DictStrAny', 'SetStr', Optional[ValidationError]]:
|
||
|
"""
|
||
|
validate data against a model.
|
||
|
"""
|
||
|
values = {}
|
||
|
errors = []
|
||
|
# input_data names, possibly alias
|
||
|
names_used = set()
|
||
|
# field names, never aliases
|
||
|
fields_set = set()
|
||
|
config = model.__config__
|
||
|
check_extra = config.extra is not Extra.ignore
|
||
|
cls_ = cls or model
|
||
|
|
||
|
for validator in model.__pre_root_validators__:
|
||
|
try:
|
||
|
input_data = validator(cls_, input_data)
|
||
|
except (ValueError, TypeError, AssertionError) as exc:
|
||
|
return {}, set(), ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls_)
|
||
|
|
||
|
for name, field in model.__fields__.items():
|
||
|
value = input_data.get(field.alias, _missing)
|
||
|
using_name = False
|
||
|
if value is _missing and config.allow_population_by_field_name and field.alt_alias:
|
||
|
value = input_data.get(field.name, _missing)
|
||
|
using_name = True
|
||
|
|
||
|
if value is _missing:
|
||
|
if field.required:
|
||
|
errors.append(ErrorWrapper(MissingError(), loc=field.alias))
|
||
|
continue
|
||
|
|
||
|
value = field.get_default()
|
||
|
|
||
|
if not config.validate_all and not field.validate_always:
|
||
|
values[name] = value
|
||
|
continue
|
||
|
else:
|
||
|
fields_set.add(name)
|
||
|
if check_extra:
|
||
|
names_used.add(field.name if using_name else field.alias)
|
||
|
|
||
|
v_, errors_ = field.validate(value, values, loc=field.alias, cls=cls_)
|
||
|
if isinstance(errors_, ErrorWrapper):
|
||
|
errors.append(errors_)
|
||
|
elif isinstance(errors_, list):
|
||
|
errors.extend(errors_)
|
||
|
else:
|
||
|
values[name] = v_
|
||
|
|
||
|
if check_extra:
|
||
|
if isinstance(input_data, GetterDict):
|
||
|
extra = input_data.extra_keys() - names_used
|
||
|
else:
|
||
|
extra = input_data.keys() - names_used
|
||
|
if extra:
|
||
|
fields_set |= extra
|
||
|
if config.extra is Extra.allow:
|
||
|
for f in extra:
|
||
|
values[f] = input_data[f]
|
||
|
else:
|
||
|
for f in sorted(extra):
|
||
|
errors.append(ErrorWrapper(ExtraError(), loc=f))
|
||
|
|
||
|
for skip_on_failure, validator in model.__post_root_validators__:
|
||
|
if skip_on_failure and errors:
|
||
|
continue
|
||
|
try:
|
||
|
values = validator(cls_, values)
|
||
|
except (ValueError, TypeError, AssertionError) as exc:
|
||
|
errors.append(ErrorWrapper(exc, loc=ROOT_KEY))
|
||
|
|
||
|
if errors:
|
||
|
return values, fields_set, ValidationError(errors, cls_)
|
||
|
else:
|
||
|
return values, fields_set, None
|