339 lines
14 KiB
Python
339 lines
14 KiB
Python
|
"""Provide an enhanced dataclass that performs validation."""
|
||
|
|
||
|
from __future__ import annotations as _annotations
|
||
|
|
||
|
import dataclasses
|
||
|
import sys
|
||
|
import types
|
||
|
from typing import TYPE_CHECKING, Any, Callable, Generic, NoReturn, TypeVar, overload
|
||
|
|
||
|
from typing_extensions import Literal, TypeGuard, dataclass_transform
|
||
|
|
||
|
from ._internal import _config, _decorators, _typing_extra
|
||
|
from ._internal import _dataclasses as _pydantic_dataclasses
|
||
|
from ._migration import getattr_migration
|
||
|
from .config import ConfigDict
|
||
|
from .errors import PydanticUserError
|
||
|
from .fields import Field, FieldInfo, PrivateAttr
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ._internal._dataclasses import PydanticDataclass
|
||
|
|
||
|
__all__ = 'dataclass', 'rebuild_dataclass'
|
||
|
|
||
|
_T = TypeVar('_T')
|
||
|
|
||
|
if sys.version_info >= (3, 10):
|
||
|
|
||
|
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
|
||
|
@overload
|
||
|
def dataclass(
|
||
|
*,
|
||
|
init: Literal[False] = False,
|
||
|
repr: bool = True,
|
||
|
eq: bool = True,
|
||
|
order: bool = False,
|
||
|
unsafe_hash: bool = False,
|
||
|
frozen: bool = False,
|
||
|
config: ConfigDict | type[object] | None = None,
|
||
|
validate_on_init: bool | None = None,
|
||
|
kw_only: bool = ...,
|
||
|
slots: bool = ...,
|
||
|
) -> Callable[[type[_T]], type[PydanticDataclass]]: # type: ignore
|
||
|
...
|
||
|
|
||
|
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
|
||
|
@overload
|
||
|
def dataclass(
|
||
|
_cls: type[_T], # type: ignore
|
||
|
*,
|
||
|
init: Literal[False] = False,
|
||
|
repr: bool = True,
|
||
|
eq: bool = True,
|
||
|
order: bool = False,
|
||
|
unsafe_hash: bool = False,
|
||
|
frozen: bool = False,
|
||
|
config: ConfigDict | type[object] | None = None,
|
||
|
validate_on_init: bool | None = None,
|
||
|
kw_only: bool = ...,
|
||
|
slots: bool = ...,
|
||
|
) -> type[PydanticDataclass]: ...
|
||
|
|
||
|
else:
|
||
|
|
||
|
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
|
||
|
@overload
|
||
|
def dataclass(
|
||
|
*,
|
||
|
init: Literal[False] = False,
|
||
|
repr: bool = True,
|
||
|
eq: bool = True,
|
||
|
order: bool = False,
|
||
|
unsafe_hash: bool = False,
|
||
|
frozen: bool = False,
|
||
|
config: ConfigDict | type[object] | None = None,
|
||
|
validate_on_init: bool | None = None,
|
||
|
) -> Callable[[type[_T]], type[PydanticDataclass]]: # type: ignore
|
||
|
...
|
||
|
|
||
|
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
|
||
|
@overload
|
||
|
def dataclass(
|
||
|
_cls: type[_T], # type: ignore
|
||
|
*,
|
||
|
init: Literal[False] = False,
|
||
|
repr: bool = True,
|
||
|
eq: bool = True,
|
||
|
order: bool = False,
|
||
|
unsafe_hash: bool = False,
|
||
|
frozen: bool = False,
|
||
|
config: ConfigDict | type[object] | None = None,
|
||
|
validate_on_init: bool | None = None,
|
||
|
) -> type[PydanticDataclass]: ...
|
||
|
|
||
|
|
||
|
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
|
||
|
def dataclass( # noqa: C901
|
||
|
_cls: type[_T] | None = None,
|
||
|
*,
|
||
|
init: Literal[False] = False,
|
||
|
repr: bool = True,
|
||
|
eq: bool = True,
|
||
|
order: bool = False,
|
||
|
unsafe_hash: bool = False,
|
||
|
frozen: bool = False,
|
||
|
config: ConfigDict | type[object] | None = None,
|
||
|
validate_on_init: bool | None = None,
|
||
|
kw_only: bool = False,
|
||
|
slots: bool = False,
|
||
|
) -> Callable[[type[_T]], type[PydanticDataclass]] | type[PydanticDataclass]:
|
||
|
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/dataclasses/
|
||
|
|
||
|
A decorator used to create a Pydantic-enhanced dataclass, similar to the standard Python `dataclass`,
|
||
|
but with added validation.
|
||
|
|
||
|
This function should be used similarly to `dataclasses.dataclass`.
|
||
|
|
||
|
Args:
|
||
|
_cls: The target `dataclass`.
|
||
|
init: Included for signature compatibility with `dataclasses.dataclass`, and is passed through to
|
||
|
`dataclasses.dataclass` when appropriate. If specified, must be set to `False`, as pydantic inserts its
|
||
|
own `__init__` function.
|
||
|
repr: A boolean indicating whether to include the field in the `__repr__` output.
|
||
|
eq: Determines if a `__eq__` method should be generated for the class.
|
||
|
order: Determines if comparison magic methods should be generated, such as `__lt__`, but not `__eq__`.
|
||
|
unsafe_hash: Determines if a `__hash__` method should be included in the class, as in `dataclasses.dataclass`.
|
||
|
frozen: Determines if the generated class should be a 'frozen' `dataclass`, which does not allow its
|
||
|
attributes to be modified after it has been initialized.
|
||
|
config: The Pydantic config to use for the `dataclass`.
|
||
|
validate_on_init: A deprecated parameter included for backwards compatibility; in V2, all Pydantic dataclasses
|
||
|
are validated on init.
|
||
|
kw_only: Determines if `__init__` method parameters must be specified by keyword only. Defaults to `False`.
|
||
|
slots: Determines if the generated class should be a 'slots' `dataclass`, which does not allow the addition of
|
||
|
new attributes after instantiation.
|
||
|
|
||
|
Returns:
|
||
|
A decorator that accepts a class as its argument and returns a Pydantic `dataclass`.
|
||
|
|
||
|
Raises:
|
||
|
AssertionError: Raised if `init` is not `False` or `validate_on_init` is `False`.
|
||
|
"""
|
||
|
assert init is False, 'pydantic.dataclasses.dataclass only supports init=False'
|
||
|
assert validate_on_init is not False, 'validate_on_init=False is no longer supported'
|
||
|
|
||
|
if sys.version_info >= (3, 10):
|
||
|
kwargs = dict(kw_only=kw_only, slots=slots)
|
||
|
else:
|
||
|
kwargs = {}
|
||
|
|
||
|
def make_pydantic_fields_compatible(cls: type[Any]) -> None:
|
||
|
"""Make sure that stdlib `dataclasses` understands `Field` kwargs like `kw_only`
|
||
|
To do that, we simply change
|
||
|
`x: int = pydantic.Field(..., kw_only=True)`
|
||
|
into
|
||
|
`x: int = dataclasses.field(default=pydantic.Field(..., kw_only=True), kw_only=True)`
|
||
|
"""
|
||
|
for annotation_cls in cls.__mro__:
|
||
|
# In Python < 3.9, `__annotations__` might not be present if there are no fields.
|
||
|
# we therefore need to use `getattr` to avoid an `AttributeError`.
|
||
|
annotations = getattr(annotation_cls, '__annotations__', [])
|
||
|
for field_name in annotations:
|
||
|
field_value = getattr(cls, field_name, None)
|
||
|
# Process only if this is an instance of `FieldInfo`.
|
||
|
if not isinstance(field_value, FieldInfo):
|
||
|
continue
|
||
|
|
||
|
# Initialize arguments for the standard `dataclasses.field`.
|
||
|
field_args: dict = {'default': field_value}
|
||
|
|
||
|
# Handle `kw_only` for Python 3.10+
|
||
|
if sys.version_info >= (3, 10) and field_value.kw_only:
|
||
|
field_args['kw_only'] = True
|
||
|
|
||
|
# Set `repr` attribute if it's explicitly specified to be not `True`.
|
||
|
if field_value.repr is not True:
|
||
|
field_args['repr'] = field_value.repr
|
||
|
|
||
|
setattr(cls, field_name, dataclasses.field(**field_args))
|
||
|
# In Python 3.8, dataclasses checks cls.__dict__['__annotations__'] for annotations,
|
||
|
# so we must make sure it's initialized before we add to it.
|
||
|
if cls.__dict__.get('__annotations__') is None:
|
||
|
cls.__annotations__ = {}
|
||
|
cls.__annotations__[field_name] = annotations[field_name]
|
||
|
|
||
|
def create_dataclass(cls: type[Any]) -> type[PydanticDataclass]:
|
||
|
"""Create a Pydantic dataclass from a regular dataclass.
|
||
|
|
||
|
Args:
|
||
|
cls: The class to create the Pydantic dataclass from.
|
||
|
|
||
|
Returns:
|
||
|
A Pydantic dataclass.
|
||
|
"""
|
||
|
from ._internal._utils import is_model_class
|
||
|
|
||
|
if is_model_class(cls):
|
||
|
raise PydanticUserError(
|
||
|
f'Cannot create a Pydantic dataclass from {cls.__name__} as it is already a Pydantic model',
|
||
|
code='dataclass-on-model',
|
||
|
)
|
||
|
|
||
|
original_cls = cls
|
||
|
|
||
|
config_dict = config
|
||
|
if config_dict is None:
|
||
|
# if not explicitly provided, read from the type
|
||
|
cls_config = getattr(cls, '__pydantic_config__', None)
|
||
|
if cls_config is not None:
|
||
|
config_dict = cls_config
|
||
|
config_wrapper = _config.ConfigWrapper(config_dict)
|
||
|
decorators = _decorators.DecoratorInfos.build(cls)
|
||
|
|
||
|
# Keep track of the original __doc__ so that we can restore it after applying the dataclasses decorator
|
||
|
# Otherwise, classes with no __doc__ will have their signature added into the JSON schema description,
|
||
|
# since dataclasses.dataclass will set this as the __doc__
|
||
|
original_doc = cls.__doc__
|
||
|
|
||
|
if _pydantic_dataclasses.is_builtin_dataclass(cls):
|
||
|
# Don't preserve the docstring for vanilla dataclasses, as it may include the signature
|
||
|
# This matches v1 behavior, and there was an explicit test for it
|
||
|
original_doc = None
|
||
|
|
||
|
# We don't want to add validation to the existing std lib dataclass, so we will subclass it
|
||
|
# If the class is generic, we need to make sure the subclass also inherits from Generic
|
||
|
# with all the same parameters.
|
||
|
bases = (cls,)
|
||
|
if issubclass(cls, Generic):
|
||
|
generic_base = Generic[cls.__parameters__] # type: ignore
|
||
|
bases = bases + (generic_base,)
|
||
|
cls = types.new_class(cls.__name__, bases)
|
||
|
|
||
|
make_pydantic_fields_compatible(cls)
|
||
|
|
||
|
cls = dataclasses.dataclass( # type: ignore[call-overload]
|
||
|
cls,
|
||
|
# the value of init here doesn't affect anything except that it makes it easier to generate a signature
|
||
|
init=True,
|
||
|
repr=repr,
|
||
|
eq=eq,
|
||
|
order=order,
|
||
|
unsafe_hash=unsafe_hash,
|
||
|
frozen=frozen,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
cls.__pydantic_decorators__ = decorators # type: ignore
|
||
|
cls.__doc__ = original_doc
|
||
|
cls.__module__ = original_cls.__module__
|
||
|
cls.__qualname__ = original_cls.__qualname__
|
||
|
pydantic_complete = _pydantic_dataclasses.complete_dataclass(
|
||
|
cls, config_wrapper, raise_errors=False, types_namespace=None
|
||
|
)
|
||
|
cls.__pydantic_complete__ = pydantic_complete # type: ignore
|
||
|
return cls
|
||
|
|
||
|
if _cls is None:
|
||
|
return create_dataclass
|
||
|
|
||
|
return create_dataclass(_cls)
|
||
|
|
||
|
|
||
|
__getattr__ = getattr_migration(__name__)
|
||
|
|
||
|
if (3, 8) <= sys.version_info < (3, 11):
|
||
|
# Monkeypatch dataclasses.InitVar so that typing doesn't error if it occurs as a type when evaluating type hints
|
||
|
# Starting in 3.11, typing.get_type_hints will not raise an error if the retrieved type hints are not callable.
|
||
|
|
||
|
def _call_initvar(*args: Any, **kwargs: Any) -> NoReturn:
|
||
|
"""This function does nothing but raise an error that is as similar as possible to what you'd get
|
||
|
if you were to try calling `InitVar[int]()` without this monkeypatch. The whole purpose is just
|
||
|
to ensure typing._type_check does not error if the type hint evaluates to `InitVar[<parameter>]`.
|
||
|
"""
|
||
|
raise TypeError("'InitVar' object is not callable")
|
||
|
|
||
|
dataclasses.InitVar.__call__ = _call_initvar
|
||
|
|
||
|
|
||
|
def rebuild_dataclass(
|
||
|
cls: type[PydanticDataclass],
|
||
|
*,
|
||
|
force: bool = False,
|
||
|
raise_errors: bool = True,
|
||
|
_parent_namespace_depth: int = 2,
|
||
|
_types_namespace: dict[str, Any] | None = None,
|
||
|
) -> bool | None:
|
||
|
"""Try to rebuild the pydantic-core schema for the dataclass.
|
||
|
|
||
|
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during
|
||
|
the initial attempt to build the schema, and automatic rebuilding fails.
|
||
|
|
||
|
This is analogous to `BaseModel.model_rebuild`.
|
||
|
|
||
|
Args:
|
||
|
cls: The class to rebuild the pydantic-core schema for.
|
||
|
force: Whether to force the rebuilding of the schema, defaults to `False`.
|
||
|
raise_errors: Whether to raise errors, defaults to `True`.
|
||
|
_parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
|
||
|
_types_namespace: The types namespace, defaults to `None`.
|
||
|
|
||
|
Returns:
|
||
|
Returns `None` if the schema is already "complete" and rebuilding was not required.
|
||
|
If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`.
|
||
|
"""
|
||
|
if not force and cls.__pydantic_complete__:
|
||
|
return None
|
||
|
else:
|
||
|
if _types_namespace is not None:
|
||
|
types_namespace: dict[str, Any] | None = _types_namespace.copy()
|
||
|
else:
|
||
|
if _parent_namespace_depth > 0:
|
||
|
frame_parent_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth) or {}
|
||
|
# Note: we may need to add something similar to cls.__pydantic_parent_namespace__ from BaseModel
|
||
|
# here when implementing handling of recursive generics. See BaseModel.model_rebuild for reference.
|
||
|
types_namespace = frame_parent_ns
|
||
|
else:
|
||
|
types_namespace = {}
|
||
|
|
||
|
types_namespace = _typing_extra.get_cls_types_namespace(cls, types_namespace)
|
||
|
return _pydantic_dataclasses.complete_dataclass(
|
||
|
cls,
|
||
|
_config.ConfigWrapper(cls.__pydantic_config__, check=False),
|
||
|
raise_errors=raise_errors,
|
||
|
types_namespace=types_namespace,
|
||
|
)
|
||
|
|
||
|
|
||
|
def is_pydantic_dataclass(class_: type[Any], /) -> TypeGuard[type[PydanticDataclass]]:
|
||
|
"""Whether a class is a pydantic dataclass.
|
||
|
|
||
|
Args:
|
||
|
class_: The class.
|
||
|
|
||
|
Returns:
|
||
|
`True` if the class is a pydantic dataclass, `False` otherwise.
|
||
|
"""
|
||
|
try:
|
||
|
return '__pydantic_validator__' in class_.__dict__ and dataclasses.is_dataclass(class_)
|
||
|
except AttributeError:
|
||
|
return False
|