344 lines
11 KiB
Python
344 lines
11 KiB
Python
|
import dataclasses
|
||
|
import datetime
|
||
|
from collections import defaultdict, deque
|
||
|
from decimal import Decimal
|
||
|
from enum import Enum
|
||
|
from ipaddress import (
|
||
|
IPv4Address,
|
||
|
IPv4Interface,
|
||
|
IPv4Network,
|
||
|
IPv6Address,
|
||
|
IPv6Interface,
|
||
|
IPv6Network,
|
||
|
)
|
||
|
from pathlib import Path, PurePath
|
||
|
from re import Pattern
|
||
|
from types import GeneratorType
|
||
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
||
|
from uuid import UUID
|
||
|
|
||
|
from fastapi.types import IncEx
|
||
|
from pydantic import BaseModel
|
||
|
from pydantic.color import Color
|
||
|
from pydantic.networks import AnyUrl, NameEmail
|
||
|
from pydantic.types import SecretBytes, SecretStr
|
||
|
from typing_extensions import Annotated, Doc
|
||
|
|
||
|
from ._compat import PYDANTIC_V2, UndefinedType, Url, _model_dump
|
||
|
|
||
|
|
||
|
# Taken from Pydantic v1 as is
|
||
|
def isoformat(o: Union[datetime.date, datetime.time]) -> str:
|
||
|
return o.isoformat()
|
||
|
|
||
|
|
||
|
# Taken from Pydantic v1 as is
|
||
|
# TODO: pv2 should this return strings instead?
|
||
|
def decimal_encoder(dec_value: Decimal) -> Union[int, float]:
|
||
|
"""
|
||
|
Encodes a Decimal as int of there's no exponent, otherwise float
|
||
|
|
||
|
This is useful when we use ConstrainedDecimal to represent Numeric(x,0)
|
||
|
where a integer (but not int typed) is used. Encoding this as a float
|
||
|
results in failed round-tripping between encode and parse.
|
||
|
Our Id type is a prime example of this.
|
||
|
|
||
|
>>> decimal_encoder(Decimal("1.0"))
|
||
|
1.0
|
||
|
|
||
|
>>> decimal_encoder(Decimal("1"))
|
||
|
1
|
||
|
"""
|
||
|
if dec_value.as_tuple().exponent >= 0: # type: ignore[operator]
|
||
|
return int(dec_value)
|
||
|
else:
|
||
|
return float(dec_value)
|
||
|
|
||
|
|
||
|
ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = {
|
||
|
bytes: lambda o: o.decode(),
|
||
|
Color: str,
|
||
|
datetime.date: isoformat,
|
||
|
datetime.datetime: isoformat,
|
||
|
datetime.time: isoformat,
|
||
|
datetime.timedelta: lambda td: td.total_seconds(),
|
||
|
Decimal: decimal_encoder,
|
||
|
Enum: lambda o: o.value,
|
||
|
frozenset: list,
|
||
|
deque: list,
|
||
|
GeneratorType: list,
|
||
|
IPv4Address: str,
|
||
|
IPv4Interface: str,
|
||
|
IPv4Network: str,
|
||
|
IPv6Address: str,
|
||
|
IPv6Interface: str,
|
||
|
IPv6Network: str,
|
||
|
NameEmail: str,
|
||
|
Path: str,
|
||
|
Pattern: lambda o: o.pattern,
|
||
|
SecretBytes: str,
|
||
|
SecretStr: str,
|
||
|
set: list,
|
||
|
UUID: str,
|
||
|
Url: str,
|
||
|
AnyUrl: str,
|
||
|
}
|
||
|
|
||
|
|
||
|
def generate_encoders_by_class_tuples(
|
||
|
type_encoder_map: Dict[Any, Callable[[Any], Any]],
|
||
|
) -> Dict[Callable[[Any], Any], Tuple[Any, ...]]:
|
||
|
encoders_by_class_tuples: Dict[Callable[[Any], Any], Tuple[Any, ...]] = defaultdict(
|
||
|
tuple
|
||
|
)
|
||
|
for type_, encoder in type_encoder_map.items():
|
||
|
encoders_by_class_tuples[encoder] += (type_,)
|
||
|
return encoders_by_class_tuples
|
||
|
|
||
|
|
||
|
encoders_by_class_tuples = generate_encoders_by_class_tuples(ENCODERS_BY_TYPE)
|
||
|
|
||
|
|
||
|
def jsonable_encoder(
|
||
|
obj: Annotated[
|
||
|
Any,
|
||
|
Doc(
|
||
|
"""
|
||
|
The input object to convert to JSON.
|
||
|
"""
|
||
|
),
|
||
|
],
|
||
|
include: Annotated[
|
||
|
Optional[IncEx],
|
||
|
Doc(
|
||
|
"""
|
||
|
Pydantic's `include` parameter, passed to Pydantic models to set the
|
||
|
fields to include.
|
||
|
"""
|
||
|
),
|
||
|
] = None,
|
||
|
exclude: Annotated[
|
||
|
Optional[IncEx],
|
||
|
Doc(
|
||
|
"""
|
||
|
Pydantic's `exclude` parameter, passed to Pydantic models to set the
|
||
|
fields to exclude.
|
||
|
"""
|
||
|
),
|
||
|
] = None,
|
||
|
by_alias: Annotated[
|
||
|
bool,
|
||
|
Doc(
|
||
|
"""
|
||
|
Pydantic's `by_alias` parameter, passed to Pydantic models to define if
|
||
|
the output should use the alias names (when provided) or the Python
|
||
|
attribute names. In an API, if you set an alias, it's probably because you
|
||
|
want to use it in the result, so you probably want to leave this set to
|
||
|
`True`.
|
||
|
"""
|
||
|
),
|
||
|
] = True,
|
||
|
exclude_unset: Annotated[
|
||
|
bool,
|
||
|
Doc(
|
||
|
"""
|
||
|
Pydantic's `exclude_unset` parameter, passed to Pydantic models to define
|
||
|
if it should exclude from the output the fields that were not explicitly
|
||
|
set (and that only had their default values).
|
||
|
"""
|
||
|
),
|
||
|
] = False,
|
||
|
exclude_defaults: Annotated[
|
||
|
bool,
|
||
|
Doc(
|
||
|
"""
|
||
|
Pydantic's `exclude_defaults` parameter, passed to Pydantic models to define
|
||
|
if it should exclude from the output the fields that had the same default
|
||
|
value, even when they were explicitly set.
|
||
|
"""
|
||
|
),
|
||
|
] = False,
|
||
|
exclude_none: Annotated[
|
||
|
bool,
|
||
|
Doc(
|
||
|
"""
|
||
|
Pydantic's `exclude_none` parameter, passed to Pydantic models to define
|
||
|
if it should exclude from the output any fields that have a `None` value.
|
||
|
"""
|
||
|
),
|
||
|
] = False,
|
||
|
custom_encoder: Annotated[
|
||
|
Optional[Dict[Any, Callable[[Any], Any]]],
|
||
|
Doc(
|
||
|
"""
|
||
|
Pydantic's `custom_encoder` parameter, passed to Pydantic models to define
|
||
|
a custom encoder.
|
||
|
"""
|
||
|
),
|
||
|
] = None,
|
||
|
sqlalchemy_safe: Annotated[
|
||
|
bool,
|
||
|
Doc(
|
||
|
"""
|
||
|
Exclude from the output any fields that start with the name `_sa`.
|
||
|
|
||
|
This is mainly a hack for compatibility with SQLAlchemy objects, they
|
||
|
store internal SQLAlchemy-specific state in attributes named with `_sa`,
|
||
|
and those objects can't (and shouldn't be) serialized to JSON.
|
||
|
"""
|
||
|
),
|
||
|
] = True,
|
||
|
) -> Any:
|
||
|
"""
|
||
|
Convert any object to something that can be encoded in JSON.
|
||
|
|
||
|
This is used internally by FastAPI to make sure anything you return can be
|
||
|
encoded as JSON before it is sent to the client.
|
||
|
|
||
|
You can also use it yourself, for example to convert objects before saving them
|
||
|
in a database that supports only JSON.
|
||
|
|
||
|
Read more about it in the
|
||
|
[FastAPI docs for JSON Compatible Encoder](https://fastapi.tiangolo.com/tutorial/encoder/).
|
||
|
"""
|
||
|
custom_encoder = custom_encoder or {}
|
||
|
if custom_encoder:
|
||
|
if type(obj) in custom_encoder:
|
||
|
return custom_encoder[type(obj)](obj)
|
||
|
else:
|
||
|
for encoder_type, encoder_instance in custom_encoder.items():
|
||
|
if isinstance(obj, encoder_type):
|
||
|
return encoder_instance(obj)
|
||
|
if include is not None and not isinstance(include, (set, dict)):
|
||
|
include = set(include)
|
||
|
if exclude is not None and not isinstance(exclude, (set, dict)):
|
||
|
exclude = set(exclude)
|
||
|
if isinstance(obj, BaseModel):
|
||
|
# TODO: remove when deprecating Pydantic v1
|
||
|
encoders: Dict[Any, Any] = {}
|
||
|
if not PYDANTIC_V2:
|
||
|
encoders = getattr(obj.__config__, "json_encoders", {}) # type: ignore[attr-defined]
|
||
|
if custom_encoder:
|
||
|
encoders.update(custom_encoder)
|
||
|
obj_dict = _model_dump(
|
||
|
obj,
|
||
|
mode="json",
|
||
|
include=include,
|
||
|
exclude=exclude,
|
||
|
by_alias=by_alias,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_none=exclude_none,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
)
|
||
|
if "__root__" in obj_dict:
|
||
|
obj_dict = obj_dict["__root__"]
|
||
|
return jsonable_encoder(
|
||
|
obj_dict,
|
||
|
exclude_none=exclude_none,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
# TODO: remove when deprecating Pydantic v1
|
||
|
custom_encoder=encoders,
|
||
|
sqlalchemy_safe=sqlalchemy_safe,
|
||
|
)
|
||
|
if dataclasses.is_dataclass(obj):
|
||
|
obj_dict = dataclasses.asdict(obj)
|
||
|
return jsonable_encoder(
|
||
|
obj_dict,
|
||
|
include=include,
|
||
|
exclude=exclude,
|
||
|
by_alias=by_alias,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
exclude_none=exclude_none,
|
||
|
custom_encoder=custom_encoder,
|
||
|
sqlalchemy_safe=sqlalchemy_safe,
|
||
|
)
|
||
|
if isinstance(obj, Enum):
|
||
|
return obj.value
|
||
|
if isinstance(obj, PurePath):
|
||
|
return str(obj)
|
||
|
if isinstance(obj, (str, int, float, type(None))):
|
||
|
return obj
|
||
|
if isinstance(obj, UndefinedType):
|
||
|
return None
|
||
|
if isinstance(obj, dict):
|
||
|
encoded_dict = {}
|
||
|
allowed_keys = set(obj.keys())
|
||
|
if include is not None:
|
||
|
allowed_keys &= set(include)
|
||
|
if exclude is not None:
|
||
|
allowed_keys -= set(exclude)
|
||
|
for key, value in obj.items():
|
||
|
if (
|
||
|
(
|
||
|
not sqlalchemy_safe
|
||
|
or (not isinstance(key, str))
|
||
|
or (not key.startswith("_sa"))
|
||
|
)
|
||
|
and (value is not None or not exclude_none)
|
||
|
and key in allowed_keys
|
||
|
):
|
||
|
encoded_key = jsonable_encoder(
|
||
|
key,
|
||
|
by_alias=by_alias,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_none=exclude_none,
|
||
|
custom_encoder=custom_encoder,
|
||
|
sqlalchemy_safe=sqlalchemy_safe,
|
||
|
)
|
||
|
encoded_value = jsonable_encoder(
|
||
|
value,
|
||
|
by_alias=by_alias,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_none=exclude_none,
|
||
|
custom_encoder=custom_encoder,
|
||
|
sqlalchemy_safe=sqlalchemy_safe,
|
||
|
)
|
||
|
encoded_dict[encoded_key] = encoded_value
|
||
|
return encoded_dict
|
||
|
if isinstance(obj, (list, set, frozenset, GeneratorType, tuple, deque)):
|
||
|
encoded_list = []
|
||
|
for item in obj:
|
||
|
encoded_list.append(
|
||
|
jsonable_encoder(
|
||
|
item,
|
||
|
include=include,
|
||
|
exclude=exclude,
|
||
|
by_alias=by_alias,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
exclude_none=exclude_none,
|
||
|
custom_encoder=custom_encoder,
|
||
|
sqlalchemy_safe=sqlalchemy_safe,
|
||
|
)
|
||
|
)
|
||
|
return encoded_list
|
||
|
|
||
|
if type(obj) in ENCODERS_BY_TYPE:
|
||
|
return ENCODERS_BY_TYPE[type(obj)](obj)
|
||
|
for encoder, classes_tuple in encoders_by_class_tuples.items():
|
||
|
if isinstance(obj, classes_tuple):
|
||
|
return encoder(obj)
|
||
|
|
||
|
try:
|
||
|
data = dict(obj)
|
||
|
except Exception as e:
|
||
|
errors: List[Exception] = []
|
||
|
errors.append(e)
|
||
|
try:
|
||
|
data = vars(obj)
|
||
|
except Exception as e:
|
||
|
errors.append(e)
|
||
|
raise ValueError(errors) from e
|
||
|
return jsonable_encoder(
|
||
|
data,
|
||
|
include=include,
|
||
|
exclude=exclude,
|
||
|
by_alias=by_alias,
|
||
|
exclude_unset=exclude_unset,
|
||
|
exclude_defaults=exclude_defaults,
|
||
|
exclude_none=exclude_none,
|
||
|
custom_encoder=custom_encoder,
|
||
|
sqlalchemy_safe=sqlalchemy_safe,
|
||
|
)
|